朴素贝叶斯分类算法,分别用C语言,C++,java,python编写出来
朴素贝叶斯分类算法是一种基于贝叶斯定理的简单概率分类算法。
贝叶斯分类的基础是概率推理,就是在各种条件的存在不确定,仅知其出现概率的情况下,如何完成推理和决策任务。概率推理是与确定性推理相对应的。而朴素贝叶斯分类器是基于独立假设的,即假设样本每个特征与其他特征都不相关。
朴素贝叶斯分类算法,分别用C语言,C++,java,python编写出来
当涉及朴素贝叶斯分类算法时,下面是使用C语言、C++、Java和Python编写的示例代码:
1.**C语言示例:**
#include <stdio.h>
#include <math.h>
#define NUM_CLASSES 2
#define NUM_FEATURES 4
struct DataPoint {
double features[NUM_FEATURES];
int label;
};
double calculateGaussian(double x, double mean, double variance) {
double exponent = exp(-(pow(x – mean, 2) / (2 * variance)));
return (1 / (sqrt(2 * M_PI * variance))) * exponent;
}
int predictClass(struct DataPoint testPoint, struct DataPoint trainingSet[], int numTrainingPoints) {
double classProbabilities[NUM_CLASSES] = {0};
for (int i = 0; i < numTrainingPoints; i++) {
struct DataPoint trainingPoint = trainingSet[i];
int label = trainingPoint.label;
classProbabilities[label]++;
}
for (int i = 0; i < NUM_CLASSES; i++) {
classProbabilities[i] /= numTrainingPoints;
}
double featureProbabilities[NUM_CLASSES][NUM_FEATURES][2] = {0};
for (int i = 0; i < numTrainingPoints; i++) {
struct DataPoint trainingPoint = trainingSet[i];
int label = trainingPoint.label;
for (int j = 0; j < NUM_FEATURES; j++) {
double feature = trainingPoint.features[j];
featureProbabilities[label][j][0] += feature;
featureProbabilities[label][j][1] += pow(feature, 2);
}
}
for (int i = 0; i < NUM_CLASSES; i++) {
for (int j = 0; j < NUM_FEATURES; j++) {
double mean = featureProbabilities[i][j][0] / classProbabilities[i];
double variance = (featureProbabilities[i][j][1] / classProbabilities[i]) – pow(mean, 2);
featureProbabilities[i][j][0] = mean;
featureProbabilities[i][j][1] = variance;
}
}
double maxProbability = 0;
int predictedClass = -1;
for (int i = 0; i < NUM_CLASSES; i++) {
double probability = classProbabilities[i];
for (int j = 0; j < NUM_FEATURES; j++) {
double feature = testPoint.features[j];
double mean = featureProbabilities[i][j][0];
double variance = featureProbabilities[i][j][1];
double likelihood = calculateGaussian(feature, mean, variance);
probability *= likelihood;
}
if (probability > maxProbability) {
maxProbability = probability;
predictedClass = i;
}
}
return predictedClass;
}
2.**C++示例:**
#include <iostream>
#include <cmath>
#include <vector>
#define NUM_CLASSES 2
#define NUM_FEATURES 4
struct DataPoint {
std::vector<double> features;
int label;
};
double calculateGaussian(double x, double mean, double variance) {
double exponent = exp(-(pow(x – mean, 2) / (2 * variance)));
return (1 / (sqrt(2 * M_PI * variance))) * exponent;
}
int predictClass(DataPoint testPoint, std::vector<DataPoint> trainingSet) {
std::vector<double> classProbabilities(NUM_CLASSES, 0);
for (int i = 0; i < trainingSet.size(); i++) {
DataPoint trainingPoint = trainingSet[i];
int label = trainingPoint.label;
classProbabilities[label]++;
}
for (int i = 0; i < NUM_CLASSES; i++) {
classProbabilities[i] /= trainingSet.size();
}
std::vector<std::vector<std::vector<double>>> featureProbabilities(NUM_CLASSES, std::vector<std::vector<double>>(NUM_FEATURES, std::vector<double>(2, 0)));
for (int i = 0; i < trainingSet.size(); i++) {
DataPoint trainingPoint = trainingSet[i];
int label = trainingPoint.label;
for (int j = 0; j < NUM_FEATURES; j++) {
double feature = trainingPoint.features[j];
featureProbabilities[label][j][0] += feature;
featureProbabilities[label][j][1] += pow(feature, 2);
}
}
for (int i = 0; i < NUM_CLASSES; i++) {
for (int j = 0; j < NUM_FEATURES; j++) {
double mean = featureProbabilities[i][j][0] / classProbabilities[i];
double variance = (featureProbabilities[i][j][1] / classProbabilities[i]) – pow(mean, 2);
featureProbabilities[i][j][0] = mean;
featureProbabilities[i][j][1] = variance;
}
}
double maxProbability = 0;
int predictedClass = -1;
for (int i = 0; i < NUM_CLASSES; i++) {
double probability = classProbabilities[i];
for (int j = 0; j < NUM_FEATURES; j++) {
double feature = testPoint.features[j];
double mean = featureProbabilities[i][j][0];
double variance = featureProbabilities[i][j][1];
double likelihood = calculateGaussian(feature, mean, variance);
probability *= likelihood;
}
if (probability > maxProbability) {
maxProbability = probability;
predictedClass = i;
}
}
return predictedClass;
}
3.**JAVA示例:**
import java.util.ArrayList;
import java.util.List;
public class NaiveBayesClassifier {
private static final int NUM_CLASSES = 2;
private static final int NUM_FEATURES = 4;
private static class DataPoint {
private double[] features;
private int label;
public DataPoint(double[] features, int label) {
this.features = features;
this.label = label;
}
public double[] getFeatures() {
return features;
}
public int getLabel() {
return label;
}
}
private static double calculateGaussian(double x, double mean, double variance) {
double exponent = Math.exp(-(Math.pow(x – mean, 2) / (2 * variance)));
return (1 / (Math.sqrt(2 * Math.PI * variance))) * exponent;
}
private static int predictClass(DataPoint testPoint, List<DataPoint> trainingSet) {
double[] classProbabilities = new double[NUM_CLASSES];
for (DataPoint trainingPoint : trainingSet) {
int label = trainingPoint.getLabel();
classProbabilities[label]++;
}
for (int i = 0; i < NUM_CLASSES; i++) {
classProbabilities[i] /= trainingSet.size();
}
double[][][] featureProbabilities = new double[NUM_CLASSES][NUM_FEATURES][2];
for (DataPoint trainingPoint : trainingSet) {
int label = trainingPoint.getLabel();
for (int j = 0; j < NUM_FEATURES; j++) {
double feature = trainingPoint.getFeatures()[j];
featureProbabilities[label][j][0] += feature;
featureProbabilities[label][j][1] += Math.pow(feature, 2);
}
}
for (int i = 0; i < NUM_CLASSES; i++) {
for (int j = 0; j < NUM_FEATURES; j++) {
double mean = featureProbabilities[i][j][0] / classProbabilities[i];
double variance = (featureProbabilities[i][j][1] / classProbabilities[i]) – Math.pow(mean, 2);
featureProbabilities[i][j][0] = mean;
featureProbabilities[i][j][1] = variance;
}
}
double maxProbability = 0;
int predictedClass = -1;
for (int i = 0; i < NUM_CLASSES; i++) {
double probability = classProbabilities[i];
for (int j = 0; j < NUM_FEATURES; j++) {
double feature = testPoint.getFeatures()[j];
double mean = featureProbabilities[i][j][0];
double variance = featureProbabilities[i][j][1];
double likelihood = calculateGaussian(feature, mean, variance);
probability *= likelihood;
}
if (probability > maxProbability) {
maxProbability = probability;
predictedClass = i;
}
}
return predictedClass;
}}
4.**Python示例:**
import numpy as np
class NaiveBayesClassifier:
def __init__(self):
self.classes = None
self.class_priors = None
self.feature_probs = None
def fit(self, X, y):
self.classes = np.unique(y)
self.class_priors = np.zeros(len(self.classes))
self.feature_probs = []
for i, c in enumerate(self.classes):
X_c = X[y == c]
self.class_priors[i] = len(X_c) / len(X)
feature_probs_c = []
for j in range(X.shape[1]):
feature_values = np.unique(X[:, j])
feature_probs_j = []
for v in feature_values:
count = len(X_c[X_c[:, j] == v])
prob = (count + 1) / (len(X_c) + len(feature_values))
feature_probs_j.append(prob)
feature_probs_c.append(feature_probs_j)
self.feature_probs.append(feature_probs_c)
def predict(self, X):
y_pred = []
for x in X:
class_probs = []
for i, c in enumerate(self.classes):
class_prob = np.log(self.class_priors[i])
for j, feature_value in enumerate(x):
prob = self.feature_probs[i][j][feature_value]
class_prob += np.log(prob)
class_probs.append(class_prob)
y_pred.append(self.classes[np.argmax(class_probs)])
return np.array(y_pred)
# 示例用法
这个示例代码实现了一个简单的朴素贝叶斯分类器。首先, fit 方法用于训练模型,接受特征矩阵 X 和目标向量 y 作为输入。然后, predict 方法用于预测新数据点的类别,接受特征矩阵 X 作为输入,并返回预测的类别向量 y_pred 。
请注意,这只是一个基本的示例,用于理解朴素贝叶斯分类算法的基本原理。在实际应用中,可能需要根据具体的需求和数据进行适当的调整和改进。
扫码关注微信公众号,免费查看完整算法内容。
1.本站资源都是白菜价出售,同样的东西,我们不卖几百,也不卖几十,甚至才卖几块钱,一个永久会员能下载全站100%源码了,所以单独购买也好,会员也好均不提供相关技术服务。
2.如果源码下载地址失效请联系站长QQ进行补发。
3.本站所有资源仅用于学习及研究使用,请必须在24小时内删除所下载资源,切勿用于商业用途,否则由此引发的法律纠纷及连带责任本站和发布者概不承担。资源除标明原创外均来自网络整理,版权归原作者或本站特约原创作者所有,如侵犯到您权益请联系本站删除!
4.本站站内提供的所有可下载资源(软件等等)本站保证未做任何负面改动(不包含修复bug和完善功能等正面优化或二次开发);但本网站不能保证资源的准确性、安全性和完整性,由于源码具有复制性,一经售出,概不退换。用户下载后自行斟酌,我们以交流学习为目的,并不是所有的源码都100%无错或无bug;同时本站用户必须明白,【安安资源网】对提供下载的软件等不拥有任何权利(本站原创和特约原创作者除外),其版权归该资源的合法拥有者所有。
5.请您认真阅读上述内容,购买即以为着您同意上述内容,由于源码具有复制性,一经售出,概不退换。
安安资源网 » 朴素贝叶斯分类算法,分别用C语言,C++,java,python编写出来